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P A C K I N G S  W I T H  GAS A N D  L I Q U I D  U N I F L O W  
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We investigated theoretically the two-phase problem of chemisorption with a second-order chemical reaction 

in a liquid phase, taking absorption by amines as an example. We considered the behavior of carbon dioxide 

and carbamine concentrations at the interface and found the conditions under which the chemisorption 

resistance is concentrated entirely in the liquid. 

One of the basic stages in producing synthetic ammonia is separating the original gases from CO2 [1-3 ]. This 
stage, in turn, involves the chemisorption of C02 by organic solvents, which is carried out in adsorption columns. 
The most commonly used chemisorbents are aqueous solutions of alkalamines (monoethanolamine (MEA), 

diethanolamine (DEA), triethanolamine (TEA), NH3) [3, 4]. Current approaches to predicting similar 
chemisorption processes, which may be reduced at carbonization degrees of ct ___ 0.5 to studying absorption, 

complicated by a second-order chemical reaction proceeding in a liquid phase between amine and CO2 molecules, 

are developed in [5-7 ]. All these studies, however, are performed under the following assumptions: approximation 
of the boundary layer in the liquid, constancy of the CO2 concentration at the interface, etc, The above assumptions 

may be justifiable in predicting packed columns because of the small sizes of the standard packings generally 
employed (Raschig's and Pail's rings of ---25-50 mm); however, in the general case and, specifically, for more efficient 
plane-parallel packings tolerating large phase loadings with small pressure drops [8-10], the validity of such 
assumptions must be checked. A fixed value of the interface sets up favorable conditions for theoretically analyzing 

such chemisorption columns. 
In the present study, mass transfer in a single vertical sprayed channel is investigated, which is a part (an 

elementary cell) of a plane-parallel packing. Differential equations of transfer in the gas and liquid phases under the 

condition of flow and concentration conjugation on the surface of the liquid film are considered. 
It is well known that, for a carbonization degree of a _< 0.5, the C02 and liquid molecules react with 

alkalamine molecules by the scheme (for example, for monoethanolamine) [5, 6 ]: 

CO~ + RNH2 =~- RNHCOO- + H+, (1) 

where R = CH2-CH2-OH- is the neutral group. The CO2 gas is present in the solution in physically dissolved states 
of [C02 ] and chemically bound states, in the form of [RNCO0-]. The following linear relationship exists between 

[RNH2 ] and [RNHCOO- ]: 

[RNH~] = N' - -  2 [RNHCOO-]. 

This allows one to examine, in the liquid phase, only two transfer equations, namely, for C02 (CI) and RNHCO0- 

(C') particles. The two-phase problem is formulated as follows: 

T ' 

U t aC' 
ax 

uz = ot a% kC; (N'--2C'), 
3x ay 2 

= D t 3~C' au--- T- + kC t ( N ' -  2C'), 
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as 
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Taking into account that C is a nonvolatile component, additional conditions for these equations are written 

( i = D( ( oc" 

( O C ' ) =  (OCt)___0 for y=R, ( OC'gl av } ~ av ,} k - - ~ )  = o 

Cg=Co, Cl = C ' = 0  for X=-0 .  

fo r  v = R - -  h, 

for: y = O, 

The system of Cartesian coordinates (x-y) is chosen such that the constraints y = 0, y = R-h, and y = R are satisfied 

at the channel center, on the film surface, and at one of the walls, respectively, and the equality x = 0, at the gas 

inlet to the packing. 

Such a statement of the problem is, obviously, idealized, since it disregards many factors involved in practice, 

viz., development of the gas profile in the gas, wave formation, nonisothermicity, high concentration of the solution, 

etc. For example, in real industrial packed apparatuses, the temperature drops between the upper and the lower 

sections may reach a few tens of degrees because reaction (1) is exothermal [8 ]. It is perfectly clear that a complete 

consideration of all these factors will markedly complicate solving the problem of two-phase chemisorption. In the 

first approximation, the temperature will be assumed invariable, and the gas and liquid motion, pistonwise. These 
simplifications will not affect the qualitative pattern of the two-phase chemisorption, clarification of which is one of 

the tasks of this work. 

Let us introduce the dimensionless coordinates and function 

y = (R - -  h) yg, y = hy l , x = (.h Pe t ) x' = (R Peg) x", 
r �9 

C g =  CoCg(xT; yg), C t = kCoCt (x', Yj ), C' = (N'/2) C (x', Yt )" 

The two-dimensional problem in dimensionless form is formulated as 

.acg, ~-  a~cg aq a'ct 
= - -  a 2 C t  ( l  . - - C ) ,  

Ox" OV~ " Ox" Oy~ 

OC , O'C a~ i 2 k C o  "~ C ([ ~ C ) ;  

( ,or 
�9 . I S  

OCg ~ (at/ i: ( o ~ )  - ~ y g  ] = 0  for: y g = 0 ;  = = 0  for Yl --'--'0; 
~,OVt I 

Cg= 1, C = CI ---0 for x ' = O .  

(2) 

(3) 

(4) 

(5) 

Henceforth we will consider the most important case in practice, when the amine concentration N' greatly exceeds 
the maximum CO2 concentration in the liquid (kCo): 

N' )) kCo kPo N' = or N =  )) i. 
RT kCo (6) 
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Here, Po is the partial pressure of CO2 at the inlet. It was shown previously [9 ] that, with conditions (6) fulfilled, a 

noticeable change in the RNH2 concentration is observed only at fairly large packings that satisfy the constraint 

l' )) !/a ~. (7) 

At moderate lengths (agl _< 10) the chemical interaction between CO2 and RNH2 may be regarded as a reaction of 

pseudofirst order. Given this, it is possible to set C --- 0 in Eqs. (2)-(4) and, therefore, the two-phase problem reduces 

to a previously studied case [10 ]. 
It follows from a theoretical analysis [10, 11 ] that, with fairly long packings (a21 ' >> 1), regardless of the 

values of the parameters a 2 and N (N >> 1), it is possible to neglect the term UI(OCI/Ox') in the equation for CO2 

transfer (2) in the liquid and the source term in the relevant equation for carbamine. Moreover, in the region of the 

main variation in the CO2 concentration, the concentration C may be regarded as constant, equal to its value at the 

interface Cs (x). Consequently, the following analytic relation [ 10 ] holds for the distribution of CO2 over the film: 

CI (x', Yl ) = Cls : eh [ayt 3/1 - -  Cs (x')l (8) 
ch ta V i - -  c~ (x ') l  

Physically, this means that a fast-reaction mode takes place in the liquid, in which all carbon dioxide coming from 

the gas is expended on the formation of carbamine [5 ]. With consideration of the foregoing, the dimensional 

formulation of problem (2)-(4) simplifies: 

OCg = O~Cg o c "  c32C 
Ox" Oy~ ' Ox' Oy~ ' (9) 

( 0 @ )  = . . a s  N " i /1 - -Cs" ' ix ' ) fh (a l /1 - -Cs(x ' ) ] ,  

(10) 

Oyg / s s' 

Conditions (4)-(5) remain unchanged. The subscript indicates that the corresponding quantity is taken at the 

interface. 
The dimensionless integral equation of material balance for chemisorption in the new variables actually takes 

the same form as for two-phase absorption, with allowance for the obvious substitution e:~eN, CI=~C(x', yl) 

I~---(1--Cg) = (eN) Z. (11) 

In the general case, the solution for problem (9)-(10) is four-parametric, depending on the complexes e,/32, a2, and 

N. Subsequently, however, with allowance made for the explicit analogy between absorption of CO2 by water and 

amines, the following quantities will be used as independent dimensionless parameters 

(sN), (~/3N), a z, N. 

For a clear representation of the solution we introduce the rectangular Cartesian system of the "hydrodynamic" 

variables XN-YN, where 

X~v = lg (sN), Y~v = -- lg (e~N). (12) 

The coordinates X = log t, Y = -log (eft), introduced when considering two-phase absorption [12 ], and XN, YN, are 

related linearly by 

X , v = X + l g N ,  Y ~ . = Y - - I g N .  

Graphically, the latter equations mean that the planes (X-Y) and (XN-YN) are displaced relative to each other by 

log N along the axes XN and YN, as Fig. 1 shows. 
By analogy with two-phase absorption, the solution will be studied in various parts of the "hydrodynamic" 

plane (XN-YN). With fixed XN and YN, the parameter a 2 will "traverse" all admissible values from zero to infinity. 
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Fig. 1. Hydrodynamic plane for chemisorption XN-Y n. 

Forestalling the results obtained below, we note that it is sufficient to consider the solution in the limited 

region -1 _< XN - 1, -1 _ YN - 1 of the plane (in the so-called "chemisorptional" square). 

It is readily seen (Fig. 1) that, for N >> 1, all of this square is located at the left-hand corner of the 
"hydrodynamic" plane X-Y, that is, in the region where the following inequalities hold: 

e ( ( 1 ,  el~ (( 1. 

The latter implies that, for moderate (eN) and (eflN), the diffusional resistance in the case of physical absorption 

[ 12 ] is actually entirely concentrated in the liquid phase, whereas the dimensionless surface concentration of C02 
at the interface is 

c a b s .  , ,  ls tx ) ~ I (13) 

at any x'. 

Most of the up-to-date methods of predicting mass transfer that is complicated by chemical reactions 

occurring in the liquid phase are based on the basic mass transfer equation [13 ]. Here, in predicting the mass transfer 

coefficient kg from the additivity equation, instead of the mass transfer fll the product fll dp is used, where qb is the 

local acceleration factor of the chemical reaction. In the general case, qb is a function of the packing length. The latter 

hampers its determination and, especially, representation, not to mention that the design of apparatuses is made 
much more difficult. 

With the theoretical approach developed in this study, there is no need to find qb because it can be obtained 

just by solving the general problem. The apparatus dimensions are calculated using the efficiency functions, which 
are the dimensionless flows I(x) or ~(x) .  By analogy with absorption, in the left half of the plane XN-Y N (XN <-- 0) 

it is convenient to use, the dependence ~ ix) as the efficiency function, and in the right half (XN > 0)-- I  (x). 

Alongside the local coefficient qb, the integral acceleration coefficient �9 is sometimes used, which shows how 
many times larger the total flux I (~..) is than the corresponding quantity in absorption Iabs. Taking into account that 

the transfer equations (9) coincide with the corresponding absorption equations, with allowance for the substitution 

CI~C in the liquid phase, by the order of magnitude for the points in the "chemisorption" square it is possible to write 

r ~ NCs (x'). (14) 

This relation results from the conditions N >> 1 and (13). Thus, the dimensionless concentration Cs (x') has acquired 
yet another physical meaning. The surface concentrations Cs(x') and C/s(X') are considered in the present study, 
and, based on this, the important question of limiting the transfer processes from the side of gas (Cts --- 0) or liquid 
(Cls -~ 1) phases is clarified. 
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The relations for Cs and Cls behave qualitatively differently depending on which of the four quadrants, the 

first (XN --- 0, YN -> 0, the second (XN -< 0, YN - 0), the third (XN -< 0, YN - 0), or the fourth (XN_> 0, YN -< 0), 
the point (XN, YN) belongs to. Therefore, solutions for the two-phase problem (2)-(4) should be treated separately 
in each of the four quadrants. 

A distinctive feature of two-phase problems is the presence of characteristic dimensions hPel and RPeg and 

corresponding dimensionless lengths l' and l". The transfer equations are parabolic partial differential ones. In 
conformity with the general theory, regardless of the specific type of conjugation conditions, at small l' (l") in the 
liquid (gas) phase a diffusional boundary layer 3' of the order of vr/'(c~ '' = VT -r) exists, intergrowing throughout the 

whole thickness of the film (the channel) at distances from the outlet of the order of l' = 1 (l" = 1), so that at 
l'>>1 (l">>1) the carbamine (CO2) concentration in the film (the channel) is Cs (C/s). The relationship between hPe/ 
and RPeg (or their ratiofl 2) determines in which of the phases, gas (fly _< 1) or liquid (/32 > 1), the boundary layer 

intergrows faster. The latter follows from the equality 

6' --,  1 6" 

It is easy to verify that, on straight lines parallel to the straight line AC (the bisectrix of the second quadrant), f12 

assunes a constant value (Fig. 1). Here, f12 >__ 1 below AC and f12 _< 1 above AC. 
The solution for the problem is investigated in the current study only for the points of quadrant II of the 

plane XN-YN, where eN < 1 and eflN - EN _< 1. In this region, the parameterfl 2 can be both smaller and larger than 
unity (Fig. 1). Taking into account that the behavior of Cls depends substantially on f12, the regions f12< 1 and f12 

_> 1 are treated separately. 
Before proceeding to the general consideration of the problem we obtain two limiting solutions corresponding 

to "low" and "high" rates of chemical interaction (formally, when k=~0 and k=~oo). For k=~0, the boundary layers 

intergrow in both phases, and hence, 

Cs ~ Y, Cts ".-' 1 - -  (eN) Z. (15) 

In this case, by integrating the equations of transfer in the liquid phase with respect to Yt from zero to unity, we derive 

the ordinary differential equation determining 

dY. [ t h ( a ] / 1 - - ~ )  ] 
----- "1/I ~--'~-2 [1 - - (eN) Y,I; Z(O) = 0, (16) 

dz th a 

where P2 = a tanh a /N  is the chemisorption parameter and z = Pzx' is the dimensionless coordinate. Henceforth, the 

mean concentration of carbamine, determined from Eq. (16), is denoted by ~o(a  2, eN, z). 
The dependence Y.o(z) in the selected variables is two-parametric. It will be proved subsequently that the 

solution for two-phase chemisorption throughout quadrant II coincides with Eq. (16) at fairly small values of the 

chemisorption parameter P2 (actually, when P2 << 1). In view of N >> 1, the inequality P2 -- a tanh a /N << 1 is 
fulfilled when a << N; therefore, it is sufficient to investigate the chemisorption problem in the general formulation 
(4)-(5), (9)-(10) only for a z >> 1 because the solution coincides with ~,o(a z, XN, z) at moderate values of a 2 (a << 

N). Substituting tanh (adl-:-~s)=~ 1 in the boundary conditions (9)-(10), we obtain the dimensionless formulation 
for a 2 >> 1 

OCg O~-Cg OC O'~C (17) 

P, V l - c s i x ' , c t s  (x'); (is) 

( OC 
\ o y / "  _,-g----/s Cgs= C/s (x'). (19) 

O!tg 

Conditions (4)-(5) remain unchanged. Consequently, it is possible to decrease the number of parameters of the 
general chemisorption problem in the approximation of N >> 1 to three: 
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Pz = a/N, X,v rl Y~v, 

here a 2 >> 1. 

With moderate a << N, as was noted above, the solution reduces to the two-parametric problem (15)-(16). 

Equation (16) admits separation of the variables and can be solved in implicit form with respect to ~0 in quadratures: 

z. th (a) dX0 f 
Z. 

J t/1 "Y,o[th(a-I/l --Zo)][l (eN)Y~o] 0 

The value of this integral for a >> 1 is easily calculated [14 ]: 

I - - (  1--eN ) 1/2 
(1 - -  X0) 1/2 = eN tg [(eN) 1!2 (1 eN)  1/~ z /2 l  

1 + (  l _ _ e N  ),/2 (20) tg [(aN) 1/~ (1 - -  ~N) 1 )~ z/2] ' 
ear ~ 

Thus, the solution for the problem (4)-(5), (17)- (19) and, therefore, the efficiency function ~o  at fairly small values 
of P2 depend solely on the parameter X N. We will show that the number of governing parameters of the general 

chemisorption problem in the other limiting case (P2 >> 1) can also be reduced to unity. Let us introduce new variables 
i 

along the axes yg, Yl, and x by the formulas 

1 1 (1-vg)=-pTvg., 1-v  = --gd-v., z =  p x' 

whereupon the dimensionless formulation (17)-(18), (4)-(5) is transformed as follows: 

dCg = O~Cg. O C . =  O=C . (21) 
J 

Oz OyZg. Oz Oy2n 

s ~ OYgn/s 

** \ O ' ~ ] |  Yn=*'c~ Ygn =~c~ C = 0 ,  C g = l  for z = 0 .  (23) 

This formulation is formally derived from Eqs. (17)-(18), (4)-(5) for P2~oo . In this case, there are diffusion 
boundary layers in the gas and the liquid. The material balance equation in the new variables takes the form 

lgn ~ ff (1 - -Cg)dygn=(e~N ) ~'Cdyn~---(EN)En (24) 
0 0 

where the mean dimensionless concentration ~n is defined by 

~n  = P~Y (z). (25) 

Clearly, the efficiency function ~n(z) depends only on the parameter YN at rather large P2. We now turn to the 
general consideration of the problem (4)- (5), (17)- (19) in various regions of quadrant II of the "hydrodynamic" plane 
(Fig. 1). 

Relationships of the Solution for t52 < 1. We derive a set of analytic equations on the straight line AC (Fig. 
1). In this case, f12 = 1 and the boundary layers in the gas and the liquid intergrow to the width of the corresponding 
phase when x ' - -x" -1 .  Hence, when the inequality P2 << 1 is fulfilled, the solution is determined by the analytic 
equations (15) and (20). In the other limiting case (P2 >>- 1), the boundary layers (c5~=c5 i) can be assumed to exist 
in both phases. Subsequently, the initial section will mean column packing dimensions for which the constraints C/s 
--" 1 and Cs << 1 are filfilled. Then, the solution of Eq. (17) in the boundary layer approximation obviously exists in 
the form 
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1 Cg = (x") '/~ ta/2 (Tlg)[C--sN[~ Po.)ff,/2 (0)] + .:.., 

�9 C ,',,x ~/~t~/2 01l :)(--P21I;/2 (0)) +..., 
where the similarity variables r/g and ~/l are introduced 

,~g= (1 - v g ) / l / 7 ' ,  nt = (I - v ~  ) / V ~ ,  

(26) 

(27) 

and the function fl/2(r/) satisfies the ordinary differential equation resulting from substitution of expansions (26) 
and (27) into Eq. (17): 

a2t~, + ~ __(_a b -  vt~ = 0; b (0) = ]; b (oo) = 0. (28) 
drl 2 2 dz 

The solution for this equation for Y - 1 /2  is of the form [ 15 ] 

/1/~ (~1) = exp ( , - - ~ )  - -  ( ' ~ - )  f e x p  ( - -  - ~ - )  dr. 

Therefore, concentrations on the initial section vary as follows 

~' 1 / 7 =  21/7 Cs '~" - -  t , /2  (0) l / ' ~ '  Cls ~ 1 - -  (EN) 2 ] , / z  
" V----U 

(29) 

where the dimensionless coordinate with respect to x is z - P2x'. 
From the inequality Cs < 1 (18) it is inferred that, for z ___ 1, the concentration is Cs*l  and hence [5, 6] 

2 X ~.- 1 ~ ~2 (n + 1/2) ,exp [_~2  (n + 112) 2 x'], x '  ~ I/P~. (30) 

The constant concentration C/s can be obtained by using analytic distributions in the liquid and the gas [51: 

C(x ' ,  y t , ) = e f f c ( ~ t ) ,  C s =  l - - ( 1 - - C l s ) e r i e ( r l g ) ,  x ' = x " ( ( 1 .  (31) 

Substituting these distributions into the conjugation conditions (18) yields 

Cts. ~ 1 ~ EN.  (32) 

It should be pointed out that, for P2 >> 1, the solution on the section z = 1 (in the region of the main variations in 
Cs) depends on the parameter EN alone in full accordance with Eqs. (21)-(23) (compare Eqs. (29) and (32)). As 
an example, Fig. 2 gives a numerical calculation of the surface concentrations Cs and Cls on the straight line AC (see 

Fig. 1) for various values of XN. All calculations for the problem (17)-(20), (4)-(5) were performed on the BI~SM-6 

computer by a forward-marching method with the conditions of flow and concentration conjugation at the interface 

in much the same manner as was done for a two-phase problem of direct-flow physical absorption in [12 ]. 
For convenience of representing the numerical solution at arbitrary values of the governing parameters, 

subsequently a dimensionless length z is introduced everywhere: 

Ix'P~ (P~ <~ O, (33) 
z = Ix'P~ (P, > 1), 

The basic advantage of the variable z is that, for z=~0 (the so-called initial section with C/s = 1 and C s << 1), the 
efficiency functions ~ (when P2 -< 1) and ~n (when P2 > 1) are virtually linear: 

Y =~" Pzx' = z or Yn=~- P~x' = z. (34) 

The equality (34) results from integrating, over the entire film thickness, the second transfer equation (2) 
with appropriate boundary conditions (3)-(4) for the concentration C(x, y). Another advantage of the coordinate z 
is that Cs=~l (and, therefore, ~ is determined by the analytic formula (30)) at any point of quadrant II when z > 1. 
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Fig. 2. The surface concentrations Cs and Cls at fl = 1 at the points: a) XN = YN 
=0;  b) XN=-0.5, YN=0.5; c) XN=-I ,  YN = 1; 1) logP2 =-1.2; 2) -0.8; 3) 
-0.4; 4) 0.5; 5) 0.4; 6) log P2 >- 0.8. 

In view of the above, Cs and Cls were calculated on the section of the main variations in the concentration Cs, i.e., 

in the interval -1 __. log z < 1. 

Analyzing the relations plotted in Fig. 2 makes it clear that the concentrations Cs (z) and C/s (z) are monotonic 

functions: the first increases from zero to unity, and the second falls from unity to a minimum value (1 - eN). At 

fairly small values of the chemisorption factor P2 (practically, when log P2 --- -1), approximations (15) and (20) are 

valid, and the latter means that the solution is dependent solely on the parameter XN. 

It is easy to see that, at rather large P2 (actually, when log P2 >-- 1), in conformitywith the general theory 

(see the formulation of the problem (21)-(23)) the solution in the interval -1 ___ log z ___ 1 is also one-parametric, 

depending on the quantity EN = eN alone (because fl -- 1). In particular, with "small" z (log z ~ 0) and log P2 >- 0, 

approximations (29) are valid with a high degree of accuracy (curves 4-6 in Fig. 2). 

Studying the Solution forfl2=~0. In this case transverse variations in the gas concentration can be disregarded, 

since RPeg~0. With small values P2 << 1 in the region of the main variations in C2, the boundary layers intergrow 

in both phases and, therefore, the solution is determined by Eqs. (15) and (20). We now derive analytic relations for 
P0 >> 1. Because V-~/P 2 << 1 on the initial section, as previously (see Eqs. (27) and (28)), approximation (29) holds 

true for the surface concentration Cs, From the material balance equation it is possible to obtain Eq. (15) for Cs, 

taking into account that RPeg~,0, whereas, since the efficiency function is ~ << 1 because of the small thickness of 

the boundary layer 6' in the region of the main variations in Cs, the concentration C/s is determined analytically with 

uniform accuracy with respect to x' (see Eq, (30)) by: 
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Fig. 3. The concentrations Cs and C l s  for 1 at the points: a) YN -- 1, XN --- 0; b) 
YN-- 1, XN-- -0.5. Curves 1-6) as in Fig. 2; 7) log P2 = 1.2. 

{ 2 2 exp [--  n2 (n + l/2)ax']}. (35) Cts = 1 " ( e N )  1 - -  rc ~ (r~ + 112) ~ 
n-.~-0 

This function decreases with increasing x' and tends to a constant value (1-eN) when x' _> 1. Figure 3 presents the 

calculation of the concentrations Cs(z) and C/s(z) in the interval -1 _< log z _< 1 for small/3 at the points YN --- 1, XN 

--- 0 (/3 = 10 -1) and YN = 1, XN = -0.5 (/3 = 0.316). It is easily seen that the solution becomes one-parametric, depending 

on the parameter Xy alone, at small P2, actually with log P2 < 0, for C/s, and with log P2 -< -1 for C s, 

At rather large P2 (log P2 -> 1.2), the concentrations Cls and Cs obtained for various XN also actually do not 
differ in the interval -1 _< log z _< 1 (curve 7 in Fig. 3), since the solution must depend solely on the value Y -- 1 in 

full accordance with Eqs. (21) - (23). Here, at "large" z __. 1, the function Cts(Z) "goes out" to a constant value (1-EN) 
= 0.9 (see Eq. (32)). It should be noticed, however, that this value is not an asymptote for C/s, as it may seem in Fig. 
3 (curves 7). In fact, Eq. (32) holds in the region/3 _ 1 if the following two conditions are fulfilled: Cs =~ 1 and cT' 

_ 1 (this follows immediately from deriving Eq. (32)). Obviously, these conditions can be fulfilled only at fairly large 

P2 (1//3 << P2) and, in addition, in a limited range of packing lengths: 1 _< z ___ Pz2/32(1 _< z, x"_< 1). Subsequently 
" 2 2 (1 << x or P2fl -< z), the relation of C/s will depart from the intermediate value (1-EN), "passing" into Eq. (35), 

and, at the distances from the entrance x' = 1 (z = Pz2), C/s=~(1-eN) (in Fig. 3, Cls tends to zero and 0.68, 

respectively). 
Evidently, at moderate values of P2, satisfying the inequalities 1 _< P2 < 1]fl, the boundary layer in the gas 

intergrows completely prior to to the onset of saturation at the interface Cs=~l. In this case, there are no constant- 
concentration sections on the curve C/s(x), and relation (35) holds when z _> I, i.e., immediately on saturation (curves 

6 and 7 in Fig. 3b). 
With small values of the chemisorption facto/" (P2 < 1), the concentration Cls also changes rather  

monotonically from unity to (1-eN) in the interval -1 _< log z _< 1 (see the corresponding plots in Figs. 2 and 3). 
Thus, the concentration Cls is a decreasing function of the coordinate x in the region fl _< 1, its minimal value being 
equal to (1-eN). 
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Fig. 4. The concentrations C s and C/s forfl > 1. Designations as in Fig. 2. 

Studying the Solution for f12 >__ 1. In this region (the points lying beneath AC (see Fig. 1)), with P2 <-- 1/f12 
in the interval of the main Cs variations the boundary layer intergrows in both phases, and, therefore, the 

concentration is determined from Eqs. (15) and (20). With a further increase in the parameter P2 (1/t 32 -< P2 --- 1), 

the case when at z = 1 the boundary layer exists only in the gas phase is realized; here only the first of Eqs. (15) is 
valid. On the initial section, obviously, 

cs  ~_ z = P~x' = z, c ~  = 1 - (eN) V ~  9 V-s (36) 
V ~ "  

The expression for C/s is derived from Eq. (29), where the dimensionless coordinate was determined from Eq. (33), 

taking into account that P2 --- 1. The first of Eqs. (36) shows that the carbamine concentration in the liquid phase 
volume tends to saturation (Cs --- ~ ~" 1) and, as follows from the material balance equation (11), I ~ (eN) ___ 1. 

With such packing dimensions, the solution can be obtained from the following uniphase formulation: 

ocg 0 %  
Ox" = -"7-T',Oyg Cg = 1 for 

The solution of the problem for x" << 1 exists in the form 

eN 
1 ~ C g  : 

o o  

o 

where the function f_ 1/2 satisfies Eq, (28) at 7 - - 1 / 2 [ 15 ]: 

1 

yg = o, I -.I' Qdyg = ~N. 
o 

:-~/2 (~) 

V ~  ' 

[ - t /2  01) = exp (- -  ~12/4), 

Hence, when z >> 1, C/s is an increasing function: 
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Cls "~'1 ~ -  I ~N 1 EN-I/ ' f i~,  x" ((  1. 
= 1 -  Vh- V z  (37) $I-I/2 (n) 

0 

Comparing Eqs. (36) and (37) for small and large z suggests that for z --" 1 there is a minimum of the order of 1 - 

(EN)v~2 on the curve C/s(Z). Evidently, as the packing length increases still more (x"___ 1), when the boundary 
layers intergrow in both phases (see Eq. (20)), C/s tends to the limiting value: 

Cts ~ 1 - -  8N, 1 ~ x". (38) 

We now present the solution for P2 >> 1. In this case, in the interval of the main Cs variations the boundary layers 

exist in both phases (x' = z/P22 _< 1); hence the concentration distribution is determined from Eqs. (26) and (27) 

and, therefore, from Eqs. (29)-(33). With a subsequent packing lengthening (1 _< x') or (P~ ___ z), relations (37) and 

(38) hold for Cls(x'). 
Figure 4 gives the calculation of the surface concentrations for two points of the hydrodynamic plane: YN = 

0, XN = -0.5 and YN -- 0, XN -- -1. The two points belong to the region fl > 1. It is easily seen that, in full accordance 
with the above theoretical results, at fairly small values of the chemisorption parameter (actually, when log P2 -< 

-1.2) the concentrations cease to depend on P2 and are determined by Eqs. (15) and (20). Accordingly, at large P2 

(practically, with log P2 --- 1), the functions Cs(z) and C/s(Z) in the interval -1 _< log z _< 1 also do not depend on P2 

because they coincide with the solution for the limiting problem (21)-(23). It is clear in the figure that Cls at log z 

= 1.5 tends to the intermediate value (1-EN) -- 0. All curves in Fig. 4 (except for small P2) pass through a minimum 

and tend to the asymptotic value (38) in the region 1 ___ x' (or f12P22 ___ z). Thus, the minimum value that Cls(x) 

assumes at a fixed level of YN is equal to (32), this value being attained only at sufficiently large P2 (actually, when 

log P2 -> 1). 
Summing up the results obtained permits the conclusion that the minimum value of C/s throughout quadrant 

II (EN __< 1, eN _< 1) is 

C lsmi  n -~- min(1 -= EN,.; I ~ eN). (39) 

It is often assumed a priori in the literature (especially in designing packed devices) [6-8 ] that the 

chemisorption resistance is concentrated entirely in the liquid phase (Cls = 1) regardless of the rate. From the results 

(39), we deduce that the conditions sufficient for such a mode are simultaneous fulfillment of the inequalities 

eN (( I and E N  (( 1. (40) 

This region is situated at the upper left-hand corner of the "hydrodynamic" plane XN-YN (see Fig. 1). It should be 
emphasized that conditions (40) are sufficient in the sense that, when fulfilled, C/s = 1 irrespective of the packing 

length. Apparently, the boundaries of this region can be defined more precisely only from numerical calculations of 

the efficiency functions ~ (x) of the general two-phase problem (2)-(5) and by comparing them with appropriate 

relations for the uniphase chemisorpfion problem with the condition Cts = 1 at the interface. The latter problem was 

treated in [5, 6, 10, 11 ]. We note that, with fairly small packing dimensions (z << 1), the condition C/s = 1 is always 

fulfilled (Figs. 2-4). 
There are regions in quadrant II where the chemisorption resistance is fully concentrated in the liquid phase 

when some additional conditions are imposed on the rates of the chemical reactions. Indeed (see Figs. 2c and 4), in 
the left half of quadrant II for the points located to the left of the vertical straight line AD (XN < -1), the equality 

Cls = 0 holds for any x at rather small P2 (actually, at log P2 -< - 1). 
On the other hand (see Fig. 2), in the upper part of quadrant II (the points above the horizontal straight line 

AB), the chemisorpfion resistance is concentrated in the liquid phase, provided P2 is fairly large (log P2 -> 1), which 

is the case when the packing dimensions are small (x" << 1 or z << p22). 
The above results permit finding the conditions under which the mass transfer resistance is independent of 

the chemical reaction rate, i.e., is concentrated entirely in the gas phase. In this case, C/s = 0, and the efficiency 

function I(x) is determined from Eq. (30), where the substitution x'=~ x". should be made [16 ]. This is the mode of 
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the most intense C O 2  absorption; therefore, finding the conditions of its realization is also of practical interest, aside 
from theoretical. Obviously, at all inside points of quadrant II, where eN < 1 and EN < 1, the above-mentioned mode 

cannot be realized under any conditions whatsoever because the stringent inequality C/s > 0 (39) is always fulfilled. 

However, near the boundary of this region on the vertical straight line XN = 0 and on the horizontal straight line YN 

= 0, C/s -- 0 can be realized under certain conditions. 

In the first case (X = 0, Y > 0), this occurs when C/s(x) approaches its asymptotic value C/smi n = 1 - eN -~ 0: 

for small P2 -< 1, this requires that the inequality z >_ 1 be fulfilled; for large P2 > 1 - x' >_ 1 or z >_ P~ (Figs. 2 and 

3). In the second case (Y = 0, X < 0), the intense absorption mode is observed when Cls assumes an intermediate 

minimum value: C/smi n = 1 - EN = 0. The latter is possible only for sufficiently large values of the chemisorption 
factor (actually, when log P2 >-- 1) (Fig. 4) in the limited interval of packing lengths 1/P~ _< x'_< 1. 

As follows from the above analysis, the characteristic property of the solution for the two-phase chemisorption 

problem (2)-(5) in quadrant II is that the surface concentration of carbamine Cs(x) is a monotonically increasing 
function, changing from zero to unity on a confined section, whose magnitude in the coordinates z generally satisfies 

the inequality log z _< 1. This inequality is approximate in the sense that "going out" to the limiting straight line C s 

1 depends not only on the position of the point XN, YN on the hydrodynamic plane but also on the chemisorption 

factor P 2  (Figs. 2-4). 

Thus, with fairly long mass transfer packings (log z _> 1), the carbamine concentration at the interface 

approaches saturation and, therefore, the efficiency function ~ (x) coincides with the analytic equation (30). This is 

the so-called mode of instantaneous chemical reaction with the acceleration factor �9 ~ N [5, 6 ]. 

N O T A T I O N  

C', dimensional concentration, mole/liter; Co, constant CO2 concentration at the entrance, mole/liter; D, 

diffusion coefficient, m2/sec; k, constant of the reaction between CO2 and amine, ma/mole.sec; N', total amine 

concentration in the solution, mole/liter; k, Henry constant; R, gas constant; T, temperature, K; U, rate, m/sec; h, 

film thickness, m; l, packing length, m;  a 2 = kN'h2/Dl; N = N'/2kCo; e = qk/RUg, E = eft, f12 = RPeg/hPe/, 

dimensionless complexes; erfc(x) = 1 - exp(-t2)dt,  error function. Subscripts: l, g, liquid and gas; s, value on 
0 

the surface. 

R E F E R E N C E S  

1. V.P.  Semenov, Ammonia Production [in Russian ], Moscow (1985). 

2. A.M. Kutepov, T. I. Bondareva, and M. G. Berengarten, General Chemical Technology: Manual for Technical 

Universities [in Russian], Moscow (1985). 

3. A.M. Kutepov, Khimiya i Zhizn', No. 4, 2-8 (1987). 

4. USAPatent 1783901 (cl. 23-2),"Process for separationofacidicgases" (R.R. Bottoms), 7.10.30, Public2.12.30. 

5. I. Astarita, Mass Transfer with a Chemical Reaction [Russian translation ], Leningrad (1971). 

6. P.V. Dankverts, Gas-Liquid Reactions [Russian translation ], Moscow (1973). 

7. Yu. V. Aksel'rod, Gas-Liquid Chemisorption Processes [in Russian ], Moscow (1989). 

8. Yu. G. Pikulik, Regeneration of Carbogassed Monoethanolamine Solutions in Cleaning Technological Gases 
[in Russian ], Moscow (1988). 

9. V.N. Babak, in: Heat and Mass Transfer in Surface Combustion [in Russian ], Minsk (1986), pp. 138-144. 

10. V.N.  Babak, L. P. Kholpanov, V. A. Malyusov, and N. M. Zhavoronkov, Teor. Osn. Khim. Tekhnol., 11, No. 
1, 28-32 (1977). 

11. V .N .  Babak, T. B. Babak, L. P. Kholpanov, V. A. Malyusov, and N. M. Zhavoronkov, Teor. Osn. Khim. 
Tekhnol., 15, No. 2, 170-176 (1981). 

683 



12. V.N.  Babak, T. B. Babak, L. P. Kholpanov, V. A. Malyusov, and N. M. Zhavoronkov, Teor. Osn. Khim. 
Teldanol., 12, No. 11, 3-9 (1988). 

13. V.N. Ramm, Gas Absorption [in Russian ], Moscow (1976). 
14. 2. S. Gradshtein and I. M. Ryzhik, Table of Integrals, Sums, Series, and Products [in Russian ], Moscow (1963). 
15. E. Kamke, Manual on Ordinary Differential Equations [in Russian ], Moscow (1961). 
16. V.V. Vyazovov, Zh. Tekh. Fiz., 10, Issue 18, 1519-1523 (1940). 

684 


